5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

General Description
The MAX503 is a low-power, 10-bit, voltage-output digital-to-analog converter (DAC) that uses single 5 V or dual $\pm 5 \mathrm{~V}$ supplies. This device has an internal voltage reference plus an output buffer amplifier. Operating current is only $250 \mu \mathrm{~A}$ from a single 5 V supply, making it ideal for portable and battery-powered applications. In addition, the shrink smalloutline package (SSOP) measures only 0.1 square inches, using less board area than an 8 -pin DIP. 10-bit resolution is achieved through laser trimming of the DAC, op amp, and reference. No further adjustments are necessary.
Internal gain-setting resistors can be used to define a DAC output voltage range of 0 V to $+2.048 \mathrm{~V}, 0 \mathrm{~V}$ to +4.096 V , or $\pm 2.048 \mathrm{~V}$. Four-quadrant multiplication is possible without the use of external resistors or op amps. The parallel logic inputs are double buffered and are compatible with 4-bit, 8bit, and 16-bit microprocessors. For a hardware and software compatible 12-bit upgrade, refer to the MAX530 data sheet. For DACs with similar features but with a serial data interface, refer to the MAX504/MAX515 data sheet.

Applications

Battery-Powered Data-Conversion Products Minimum Component-Count Analog Systems Digital Offset/Gain Adjustment
Industrial Process Control
Arbitrary Function Generators
Automatic Test Equipment
Microprocessor-Controlled Calibration
Functional Diagram

- Buffered Voltage Output
- Internal 2.048 V Voltage Reference
- Operates from Single 5V or Dual $\pm 5 \mathrm{~V}$ Supplies
- Low Power Consumption:
$250 \mu \mathrm{~A}$ Operating Current
40 A A Shutdown-Mode Current
- SSOP Package Saves Space
- Relative Accuracy: $\pm^{1 / 2}$ LSB Max Over Temperature
- Guaranteed Monotonic Over Temperature
- 4-Quadrant Multiplication with No External Components
- Power-On Reset
- Double-Buffered Parallel Logic Inputs

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX503CNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX503CWG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Wide SO
MAX503CAG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 SSOP
MAX503ENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP
MAX503EWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO
MAX503EAG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 SSOP

Refer to the MAX530 for military temperature or die equivalents.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

ABSOLUTE MAXIMUM RATINGS
VDD to DGND and VDD to AGND-0.3V + +6V
VSs to DGND and VSS to AGND-6V, +0.3 V
$V_{\text {DD }}$ to $\mathrm{V}_{S S}$... $0.3 \mathrm{~V},+12 \mathrm{~V}$
AGND to DGND..-0.3V, +0.3 V
REFGND to AGND................................-0.3V, (V) $\left.\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}\right)$
Digital Input Voltage to DGND-0.3V, (VDD +0.3 V)
REFIN ...(VSS - 0.3V), (VDD +0.3 V)
REFOUT $\left.\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}\right)$, (VDD +0.3 V)
REFOUT to REFGND -0.3V, (VDD +0.3 V)
RFB ..(VSS - 0.3V), (VDD +0.3 V)

Note 1: The output may be shorted to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, DGND, or AGND if the continuous package power dissipation and current ratings are not exceeded. Typical short-circuit currents are 20 mA .
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS-Single +5 V Supply
$(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{~V} S S=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{REFGND}=0 \mathrm{~V}, \mathrm{REFIN}=2.048 \mathrm{~V}$ (external), RFB $=\mathrm{ROFS}=\mathrm{VOUT}, \mathrm{C}$ REFOUT $=33 \mu \mathrm{~F}$, $R_{L}=10 \mathrm{k} \Omega, \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{TA}=$ TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution	N		10			Bits
Relative Accuracy	INL	(Note 2)			± 0.5	LSB
Differential Nonlinearity	DNL	Guaranteed monotonic			± 1	LSB
Unipolar Offset Error	Vos		0	0.25	3	LSB
Unipolar Offset Temperature Coefficient	TCVos			3		ppm $/{ }^{\circ} \mathrm{C}$
Unipolar Offset-Error Supply Rejection	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		0.1		LSB/V
Gain Error (Note 2)	GE	DAC latch = all 1s, VOUT < VDD - 0.4V (Note 2)			± 1	LSB
Gain-Error Temperature Coefficient				1		ppm $/{ }^{\circ} \mathrm{C}$
Gain-Error Power-Supply Rejection	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		0.1		LSB/V
DAC VOLTAGE OUTPUT (VOUT)						
Output Voltage Range			0		VDD - 0.4	V
Resistive Load		VOUT $=2 \mathrm{~V}$, load regulation $\leq \pm 0.5 \mathrm{LSB}$	2			$\mathrm{k} \Omega$
DC Output Impedance				0.2		Ω
Short-Circuit Current	Isc			12		mA
REFERENCE INPUT (REFIN)						
Reference Input Range			0		VDD - 2	V
Reference Input Resistance		Code dependent, minimum at code 0101...	40			$\mathrm{k} \Omega$
Reference Input Capacitance		Code dependent (Note 3)	10		50	pF
AC Feedthrough		(Note 4)		-80		dB

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=$ REFGND $=0 \mathrm{~V}, \mathrm{REFIN}=2.048 \mathrm{~V}$ (external), RFB $=$ ROFS $=\mathrm{VOUT}, \mathrm{C}_{\text {REFOUT }}=33 \mu \mathrm{~F}$, $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE OUTPUT (REFOUT)						
Reference Tolerance	VREFOUT	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	2.024	2.048	2.072	V
		MAX503C	2.015		2.081	
		MAX503E	2.011		2.085	
Reference Output Resistance	Rrefout	(Note 5)			2	Ω
Power-Supply Rejection Ratio	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		200		$\mu \mathrm{V} / \mathrm{V}$
Noise Voltage	e_{n}	0.1 Hz to 10 kHz		400		$\mu \vee \mathrm{p}-\mathrm{p}$
Temperature Coefficient				30		ppm $/{ }^{\circ} \mathrm{C}$
Required External Capacitor	Crefout		3.3			$\mu \mathrm{F}$
DYNAMIC PERFORMANCE						
Voltage Output Slew Rate		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.15	0.25		V/ $/$ s
Voltage Output Settling Time		To $\pm 0.5 \mathrm{LSB}, \mathrm{VOUT}=2 \mathrm{~V}$		25		$\mu \mathrm{s}$
Digital Feedthrough		$\overline{\mathrm{WR}}=\mathrm{V}_{\mathrm{DD}}$, digital inputs all 1 s to all 0 s		5		nV -s
Signal-to-Noise Plus Distortion Ratio	SINAD	Unity gain (Note 4)		68		dB
		Gain = 2 (Note 4)		68		
DIGITAL INPUTS (S0, S1, D0-D9, LDAC, CLR,						
Logic High Input	V_{IH}		2.4			V
Logic Low Input	VIL				0.8	V
Digital Leakage Current		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}			± 1	$\mu \mathrm{A}$
Digital Input Capacitance				8		pF
POWER SUPPLIES						
Positive Supply-Voltage Range	VDD		4.5		5.5	V
Positive Supply Current	IDD	Outputs unloaded, all digital inputs $=0 \mathrm{~V}$ or V DD		250	400	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS						
Address to WR Setup	taws		5			ns
Address to $\overline{\mathrm{WR}}$ Hold	tawh		5			ns
$\overline{\mathrm{CS}}$ to WR Setup	tcws		0			ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Hold	tcwh		0			ns
Data to WR Setup	$t_{\text {DS }}$		45			ns
Data to WR Hold	t_{DH}		0			ns
WR Pulse Width	twR		45			ns
LDAC Pulse Width	tldac		45			ns
CLR Pulse Width	tCLR		45			ns
Internal Power-On Reset Pulse Width	tPOR	(Note 3)		1.3	10	$\mu \mathrm{s}$

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

ELECTRICAL CHARACTERISTICS—Dual ± 5 V Supplies

$(\mathrm{V} D \mathrm{D}=5 \mathrm{~V}, \mathrm{~V}$ SS $=-5 \mathrm{~V}, \mathrm{AGND}=\mathrm{DGND}=\mathrm{REFGND}=0 \mathrm{~V}$, REFIN $=2.048 \mathrm{~V}$ (external), RFB $=$ ROFS $=\mathrm{VOUT}$, CREFOUT $=33 \mu \mathrm{~F}$, $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, \mathrm{T}_{A}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution	N		10			Bits
Relative Accuracy	INL				+0.5	LSB
Differential Nonlinearity	DNL	Guaranteed monotonic			± 1	LSB
Bipolar Offset Error	Vos				± 3	LSB
Bipolar Offset Temperature Coefficient	TCVos			3		ppm $/{ }^{\circ} \mathrm{C}$
Bipolar Offset-Error Power-Supply Rejection	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V},-5.5 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-4.5 \mathrm{~V}$		0.1		LSB/V
Gain Error					± 1	LSB
Gain-Error Temperature Coefficient	TC			1		ppm/ ${ }^{\circ} \mathrm{C}$
Gain-Error Power-Supply Rejection	PSRR	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V},-5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq-4.5 \mathrm{~V}$		0.1		LSB/V
DAC VOLTAGE OUTPUT (VOUT)						
Output Voltage Range			$\mathrm{V}_{S S}+0.4$		VDD-0.4	V
Resistive Load		VOUT $=2 \mathrm{~V}$, load regulation $\leq \pm 0.5 \mathrm{LSB}$	2			$\mathrm{k} \Omega$
DC Output Impedance				0.2		Ω
Short-Circuit Current	Isc			20		mA
REFERENCE INPUT (REFIN)						
Reference Input Range			VSS + 2		VDD-2	V
Reference Input Resistance		Code dependent, minimum at code 0101...	40			$\mathrm{k} \Omega$
Reference Input Capacitance		Code dependent (Note 3)	10		50	pF
AC Feedthrough		(Note 4)		-80		dB
REFERENCE OUTPUT (REFOUT)—Specifications are identical to those under Single +5V Supply						
DYNAMIC PERFORMANCE-Specifications are identical to those under Single +5V Supply						
DIGITAL INPUTS (S0, S1, D0-D9, $\overline{\text { LDAC, }} \overline{\mathbf{C L R}}$, $\overline{\mathbf{C S}}, \overline{\mathbf{W R}}, \mathbf{A 0}, \mathbf{A 1) - S p e c i f i c a t i o n s ~ a r e ~ i d e n t i c a l ~ t o ~ t h o s e ~ u n d e r ~ S i n g l e ~ + 5 V ~ S u p p l y ~}$						
POWER SUPPLIES						
Positive Supply Voltage	V_{DD}		4.5		5.5	V
Negative Supply Voltage	VSS		-5.5		0	V
Positive Supply Current	IDD	Outputs unloaded, all digital inputs $=0 \mathrm{~V}$ or V_{DD}		250	400	$\mu \mathrm{A}$
Negative Supply Current	Iss	Outputs unloaded, all digital inputs $=0 \mathrm{~V}$ or V_{DD}		150	200	$\mu \mathrm{A}$

Note 2: In single supply, INL and GE are calculated from code 3 to code 1023 (code excludes S0 and S1).
Note 3: Guaranteed by design.
Note 4: REFIN = 1kHz, 2.0Vp-p.
Note 5: Tested at lout $=100 \mu \mathrm{~A}$. The reference can typically source up to 5 mA (see Typical Operating Characteristics).

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Typical Operating Characteristics (continued)
(Single +5 V supply, unity gain, code $=$ all $1 \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DIGITAL FEEDTHROUGH

A: SO, S1, D0-D9 $=100 \mathrm{kHz}, 4 \mathrm{Vp}-\mathrm{p}$
B: VOUT, $10 \mathrm{mV} / \mathrm{div}$
$\overline{\mathrm{LDAC}}=\overline{\mathrm{CS}}=\mathrm{HIGH}$

A: DIGTAL INPUTS FALLING EDGE, 5V/div B: VOU, NOLOAD, 1V/div
DUAL SUPPLY ($\pm 5 \mathrm{~V}$)
DAC $=$ LOW
BIPOLARCONFGURATION
$\mathrm{V}_{\mathrm{R} \in \mathrm{G}} \mathrm{N}=2 \mathrm{~V}$

SETTLNG TIME (RIIING)

$5 \mu \mathrm{~s} / \mathrm{div}$
A: DIGTAL INPUTS RISINGEDGE,
B: VOUT NOLOAD, 1 V/div
B: VOUT NOLOAD,
DUAL SUPPL
LDAC
LOW
LDAC $=$ LOW
BIPOAR OONFGURATION
BIPOLAR OO
$V_{\text {RG }}=2 \mathrm{~V}$
\qquad

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

PIN	NAME	FUNCTION
1	$\mathrm{D} 7 / \mathrm{S} 1$	D 7 input when $\mathrm{A} 0=\mathrm{A} 1=1$, or S 1 input when $\mathrm{A} 0=0$ and $\mathrm{A} 1=1$. Always set S 1 to $0 . .^{*}$
2	$\mathrm{D} 8 / \mathrm{D} 0$	D 8 input when $\mathrm{A} 0=\mathrm{A} 1=1$, or D 0 input when $\mathrm{A} 0=0$ and $\mathrm{A} 1=1 .{ }^{*}$
3	$\mathrm{D} 9 / \mathrm{D} 1$	D 9 input when $\mathrm{A} 0=\mathrm{A} 1=1$, or D 1 input when $\mathrm{A} 0=0$ and $\mathrm{A} 1=1 .{ }^{*}$

* This applies to $4+4+4$ input loading mode. See Table 2 for $8+4$ input loading mode.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Detailed Description
The MAX503 consists of a parallel-input logic interface, a 10 -bit R-2R ladder, a reference, and an op amp. The Functional Diagram shows the control lines and signal flow through the input data latch to the DAC latch, as well as the 2.048 V reference and output op amp. Total supply current is typically $250 \mu \mathrm{~A}$ with a single +5 V supply. This circuit is ideal for battery-powered, microprocessor-controlled applications where high accuracy, no adjustments, and minimum component count are key requirements.

R-2R Ladder

The MAX503 uses an "inverted" R-2R ladder network with a BiCMOS op amp to convert 10-bit digital data to analog voltage levels. Figure 1 shows a simplified diagram of the R-2R DAC and op amp. Unlike a standard DAC, the MAX503 uses an "inverted" ladder network. Normally, the REFIN pin is the current output of a standard DAC and would be connected to the summing junction, or virtual ground, of an op amp. In this standard DAC configuration, however, the output voltage would be the inverse of

Figure 1. Simplified MAX503 DAC Circuit
the reference voltage. The MAX503's topology makes the ladder output voltage the same polarity as the reference input, making the device suitable for single-supply operation. The BiCMOS op amp is then used to buffer, invert, or amplify the ladder signal.
Ladder resistors are nominally $80 \mathrm{k} \Omega$ to conserve power and are laser trimmed for gain and linearity. The input impedance at REFIN is code dependent. When the DAC register is all 0 s, all rungs of the ladder are grounded and REFIN is open or no load. Maximum loading (minimum REFIN impedance) occurs at code 010101.... Minimum reference input impedance at this code is guaranteed to be not less than $40 \mathrm{k} \Omega$.
The REFIN and REFOUT pins allow the user to choose between driving the R-2R ladder with the on-chip reference or an external reference. REFIN may be below analog ground when using dual supplies. See the External Reference and Four-Quadrant Multiplication sections for more information.

Internal Reference
The on-chip reference is laser trimmed to generate 2.048 V at REFOUT. The output stage can source and sink current so REFOUT can settle to the correct voltage quickly in response to code-dependent loading changes. Typically, source current is 5 mA and sink current is $100 \mu \mathrm{~A}$.
REFOUT connects the internal reference to the R-2R DAC ladder at REFIN. The R-2R ladder draws $50 \mu \mathrm{~A}$ maximum load current. If any other connection is made to REFOUT, ensure that the total load current is less than $100 \mu \mathrm{~A}$ to avoid gain errors.
A separate REFGND pin is provided to isolate reference currents from other analog and digital ground currents. To achieve specified noise performance, connect a $33 \mu \mathrm{~F}$ capacitor from REFOUT to REFGND (see Figure 2). Using smaller capacitance values increases noise, and values less than $3.3 \mu \mathrm{~F}$ may compromise the reference's stability. For applications requiring the lowest noise, insert a buffered RC filter between REFOUT and REFIN. When using the internal reference, REFGND must be connected to AGND. In applications not requiring the internal reference, connect REFGND to V_{DD}, which shuts down the reference. This saves typically $100 \mu \mathrm{~A}$ of V_{DD} supply current and eliminates the need for Crefout.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Figure 2. Reference Noise vs. Frequency

Output Buffer

The output amplifier uses a folded cascode input stage and a type $A B$ output stage. Large output devices with low series resistance allow the output to swing to ground in single-supply operation. The output buffer is unity-gain stable. Input offset voltage and supply current are laser trimmed. Settling time is $25 \mu \mathrm{~s}$ to 0.01% of final value. The output is short-circuit protected and can drive a $2 \mathrm{k} \Omega$ load with more than 100 pF of load capacitance. The op amp may be placed in unity-gain ($G=1$), in a gain of two ($G=2$), or in a bipolar-output mode by using the ROFS and RFB pins. These pins are used to define a DAC output voltage range of 0 V to $+2.048 \mathrm{~V}, 0 \mathrm{~V}$ to +4.096 V or $\pm 2.048 \mathrm{~V}$, by connecting ROFS to VOUT, GND, or REFIN. RFB is always connected to VOUT. Table 1 summarizes ROFS usage.

Table 1. ROFS Usage

ROFS CONNECTED TO:	DAC OUTPUT RANGE	OP-AMP GAIN
VOUT	0 V to 2.048 V	$\mathrm{G}=1$
AGND	0 V to 4.096 V	$\mathrm{G}=2$
REFIN	-2.048 V to +2.048 V	Bipolar

Note: Assumes RFB $=$ VOUT and REFIN $=$ REFOUT $=2.048 \mathrm{~V}$

External Reference

An external reference in the range ($\mathrm{V} S \mathrm{SS}+2 \mathrm{~V}$) to (VDD-2V) may be used with the MAX503 in dual-supply, unity-gain operation. In single-supply, unity-gain operation, the reference must be positive and may not exceed ($V_{D D}-2 \mathrm{~V}$). The reference voltage determines the DAC's full-scale output.
If an upgrade to the internal reference is required, the 2.5V MAX873A is ideal: $\pm 15 \mathrm{mV}$ initial accuracy, $7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (max) temperature coefficient.

Power-On Reset

An internal power-on reset (POR) circuit forces the DAC register to reset to all $0 s$ when VDD is first applied. The POR pulse is typically $1.3 \mu \mathrm{~s}$; however, it may take 2 ms for the internal reference to charge its large filter capacitor and settle to its trimmed value.
In addition to POR, a clear ($\overline{\mathrm{CLR}}$) pin, when held low, sets the DAC register to all Os. CLR operates asynchronously and independently from chip select (CS). With the DAC input at all 0 s , the op-amp output is at zero for unity-gain and $G=2$ configurations, but it is at $-V_{\text {REF }}$ for the bipolar configuration.

Shutdown Mode

The MAX503 is designed for low power consumption. Understanding the circuit allows power consumption management for maximum efficiency. In single-supply mode ($V_{D D}=+5 \mathrm{~V}, \mathrm{VSS}=\mathrm{GND}$) the initial supply current is typically only $160 \mu \mathrm{~A}$, including the reference, op amp, and DAC. This low current occurs when the power-on reset circuit clears the DAC to all Os and forces the op-amp output to zero (unipolar mode only). See the Supply Current vs. REFIN graph in the Typical Operating Characteristics. Under this condition, there is no internal load on the reference (DAC = all 0 s , REFIN is open circuit) and the op amp operates at its minimum quiescent current. The $\overline{\mathrm{CLR}}$ signal resets the MAX503 to these same conditions and can be used to control a power-saving mode when the DAC is not being used by the system.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

MAX503

Figure 3. Low-Current Shutdown Mode

Table 2. Input Latch Addressing

CLR	CS	$\overline{\text { WR }}$	$\overline{\text { LDAC }}$	A0	A1	DATA UPDATED
L	X	X	X	X	X	Reset DAC latches
H	H	X	H	X	X	No operation
H	X	H	H	X	X	No operation
H	L	L	H	H	H	NBH (D6-D9)
H	L	L	H	H	L	NBM (D2-D5)
H	L	L	H	L	H	NBL (S0 $=0$, S1 $=0$, D0, D1)
H	H	H	L	X	X	Update DAC only
H	L	L	X	L	L	NBL and NBM (S0, S1, D0-D5), DAC not updated
H	L	L	L	H	H	NBH and update DAC

An additional $110 \mu \mathrm{~A}$ of supply current can be saved when the internal reference is not used by connecting REFGND to VDD. A low on-resistance N-channel FET, such as the 2N7002, can be used to turn off the internal reference to create a shutdown mode with minimum current drain (Figure 3). When $\overline{C L R}$ is high, the transistor pulls REFGND to AGND and the reference and DAC operate normally. When CLR goes low, REFGND is pulled up to VDD and the reference is shut down. At the same time, CLR resets the DAC register to all 0s, and the op-amp output goes to OV for unity-gain and $G=2$ modes. This reduces the total single-supply operating current from $250 \mu \mathrm{~A}(400 \mu \mathrm{~A}$ max $)$ to typically $40 \mu \mathrm{~A}$ in shutdown mode.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Figure 4. MAX503 Write-Cycle Timing Diagram

A small error voltage is added to the reference output by the reference current flowing through the N -channel pull-down transistor. The switch's on resistance should be less than 5Ω. A typical reference current of $100 \mu \mathrm{~A}$ would add 0.5 mV to REFOUT. Since the reference current and on resistance increase with temperature, the overall temperature coefficient will degrade slightly.
As data is loaded into the DAC and the output moves above GND, the op-amp quiescent current increases to its nominal value and the total operating current averages $250 \mu \mathrm{~A}$. Using dual supplies ($\pm 5 \mathrm{~V}$), the op amp is fully biased continuously, and the VDD supply current is more constant at $250 \mu \mathrm{~A}$. The $\mathrm{V}_{\text {SS }}$ current is typically $150 \mu \mathrm{~A}$.
The MAX503 logic inputs are compatible with TTL and CMOS logic levels. However, to achieve the lowest power dissipation, drive the digital inputs with rail-to-rail CMOS logic. With TTL logic levels, the power requirement increases by a factor of approximately 2.

Parallel Logic Interface

In order to provide hardware and software compatibility with the 12-bit MAX530, the MAX503 employs a 12-bit digital interface. As shown in Figure 3, there is actually a 12-bit input latch, and therefore 12 bits of data should be written. The two least significant bits (S1 and S0) are sub-LSB, and must always be 0s. Designed to interface with 4-bit, 8-bit, and 16-bit microprocessors ($\mu \mathrm{Ps}$), the MAX503 uses 8 data pins and double-buffered logic inputs to load data as $4+4+4$ or $8+4$. The 12 -bit DAC latch is updated simultaneously through the control signal $\overline{L D A C}$. Signals A0, A1, $\overline{W R}$, and $\overline{C S}$ select which input latches to update. The 12-bit data is broken down into nibbles (NB); NBL is the enable signal for the lowest 4 bits (S0, S1, D0, D1), NBM is the enable for the middle 4 bits, and NBH is the enable for the highest and most significant 4 bits. Table 2 lists the address decoding scheme.
Refer to Figure 4 for the MAX503 write-cycle timing diagram.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Figure 5. 4-Bit μ P Interface

Figure 7. 8-Bit and 16-Bit μ P Interface

Figure 6. 4-Bit μ P Timing Sequence

Figure 8a. 8-Bit and 16-Bit μ P Timing Sequence Using $\overline{\text { LDAC }}$

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Figure 8 b . 8 -Bit and 16 -Bit μP Timing Sequence with $\overline{\operatorname{LDAC}}=0$

Figure 9. Unipolar Configuration (OV to +2.048V Output)
Figure 5 shows the circuit configuration for a 4 -bit $\mu \mathrm{P}$ application. Figure 6 shows the corresponding timing sequence. The 4 low bits (S0, S1, D0, D1) are connected in parallel to the other 4 bits (D2-D5) and then to the $\mu \mathrm{P}$ bus. Address lines A0 and A1 enable the input data latches for the high, middle, or low data nibbles. The $\mu \mathrm{P}$ sends chip select ($\overline{\mathrm{CS}}$) and write ($\overline{\mathrm{WR})}$ signals to latch in each of three nibbles in three cycles when the data is valid.
Figure 7 shows a typical interface to an 8 -bit or a 16 -bit $\mu \mathrm{P}$. Connect 8 data bits from the data bus to pins SO, S1, and D0-D5 on the MAX503. With LDAC held high, the user can load NBH or NBL + NBM in any order. Figure 8a shows the corresponding timing sequence. For fastest throughput, use Figure 8b's sequence. Address lines A0 and A1 are tied together and the DAC is loaded in 2 cycles as $8+4$. In this scheme, with LDAC held low, the DAC latch is transparent. Always load NBL and NBM first, followed by NBH.

Figure 10. Unipolar Configuration (OV to +4.096 V Output)
$\overline{\text { LDAC }}$ is asynchronous with respect to $\overline{W R}$. If $\overline{\text { DAC }}$ is brought low before or at the same time WR goes high, LDAC must remain low for at least 50 ns to ensure the correct data is latched. Data is latched into DAC registers on LDAC's rising edge.

Unipolar Configuration
The MAX503 is configured for a $0 V$ to VREFIN unipolar output range by connecting ROFS and RFB to VOUT (Figure 9). The converter operates from either single or dual supplies in this configuration. See Table 3 for the DAC-latch contents (input) vs. the analog VOUT (output). In this range, $1 \mathrm{LSB}=\mathrm{V}_{\text {REFIN }}\left(2^{-10}\right)$.
A 0 V to $2 \mathrm{~V}_{\text {REFIN }}$ unipolar output range is set up by connecting ROFS to AGND and RFB to VOUT (Figure 10). Table 4 shows the DAC-latch contents vs. VOUT. The MAX503 operates from either single or dual supplies in this mode. In this range, $1 \mathrm{LSB}=(2)\left(\mathrm{V}_{\text {REFIN }}\right)\left(2^{-10}\right)=$ (VREFIN)(2-9).

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Table 3. Unipolar Binary Code Table (OV to VREFin Output), Gain = 1

INPUT* *		OUTPUT	
1111	1111	$11(00)$	$\left(V_{\text {REFIN }} \frac{1023}{1024}\right.$
1000	0000	$01(00)$	$\left(V_{\text {REFIN }} \frac{513}{1024}\right.$
1000	0000	$00(00)$	$\left(V_{\text {REFIN }} \frac{512}{1024}=+V_{\text {REFIN }} 2\right.$
0111	1111	$11(00)$	$\left(V_{\text {REFIN }} \frac{511}{1024}\right.$
0000	0000	$01(00)$	$\left(V_{\text {REFIN }} \frac{1}{1024}\right.$
0000	0000	$00(00)$	$0 V$

* Write 10-bit data words with two sub-LSB 0s because the DAC input latch is 12 bits wide.

Bipolar Configuration

A -VrEFIN to $+V_{\text {REFIN }}$ bipolar range is set up by connecting ROFS to REFIN and RFB to VOUT, and operating from dual ($\pm 5 \mathrm{~V}$) supplies (Figure 11). Table 5 shows the DAC-latch contents (input) vs. VOUT (output). In this range, $1 \mathrm{LSB}=\operatorname{VREFIN}\left(2^{-9}\right)$.

Four-Quadrant Multiplication

The MAX503 can be used as a four-quadrant multiplier by connecting ROFS to REFIN and RFB to VOUT, and using (1) an offset binary digital code, (2) bipolar power supplies, and (3) a bipolar analog input at REFIN within the range $\mathrm{V}_{S S}+2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$, as shown in Figure 12.
In general, a 10-bit DAC's output is $D\left(V_{\text {REFIN }}\right)(G)$, where " G " is the gain (1 or 2) and " D " is the binary representation of the digital input divided by 2^{10} or 1,024 . This formula is precise for unipolar operation. However, for bipolar, offset binary operation, the MSB is really a polarity bit. No resolution is lost because the number of steps is the same. The output voltage, however, has been shifted from a range of, for example, 0 V to $4.096 \mathrm{~V}(\mathrm{G}=2)$ to a range of -2.048 V to +2.048 V .
Keep in mind that when using the DAC as a four-quadrant multiplier, the scale is skewed. The negative full scale is -Vrefin, while the positive full scale is $+\mathrm{V}_{\text {REFIN }}-1$ LSB.

Table 4. Unipolar Binary Code Table (OV to 2VREFIN Output), Gain = 2

INPUT* *			OUTPUT
1111	1111	$11(00)$	$+2\left(V_{\text {REFIN }} \frac{1023}{1024}\right.$
1000	0000	$01(00)$	$+2\left(V_{\text {REFIN }} \frac{513}{1024}\right.$
1000	0000	$00(00)$	$+2\left(V_{\text {REFIN }}\right) \frac{512}{1024}=+V_{\text {REFIN }}$
0111	1111	$11(00)$	$+2\left(V_{\text {REFIN }}\right) \frac{511}{1024}$
0000	0000	$01(00)$	$+2\left(V_{\text {REFIN }}\right) \frac{1}{1024}$
0000	0000	$00(00)$	$0 V$

* Write 10-bit data words with two sub-LSB 0s because the DAC input latch is 12 bits wide.

Table 5. Bipolar (Offset Binary) Code Table (-Vrefin to +Vrefin Output)

INPUT*			OUTPUT
1111	1111	$11(00)$	$\left(+V_{\text {REFIN }}\right) \frac{511}{512}$
1000	0000	$01(00)$	$\left(+V_{\text {REFIN }}\right) \frac{1}{512}$
1000	0000	$00(00)$	$\left(-V_{\text {REFIN }}\right) \frac{1}{512}$
0111	1111	$11(00)$	$\left(-V_{\text {REFIN }}\right) \frac{511}{512}$
0000	0000	$01(00)$	$\left(-V_{\text {REFIN }}\right) \frac{512}{512}=-V_{\text {REFIN }}$
0000	0000	$00(00)$	

* Write 10-bit data words with two sub-LSB Os because the DAC input latch is 12 bits wide.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Figure 11. Bipolar Configuration (-2.048V to +2.048V Output)

Applications Information

Single-Supply Linearity As with any amplifier, the MAX503's output op amp offset can be positive or negative. When the offset is positive, it is easily accounted for. However, when the offset is negative, the output cannot follow linearly when there is no negative supply. In that case, the amplifier output (VOUT) remains at ground until the DAC voltage is sufficient to overcome the offset and the output becomes positive. The resulting transfer function is shown in Figure 13.
Normally, linearity is measured after allowing for zero error and gain error. Since, in single-supply operation, the actual value of a negative offset is unknown, it cannot be accounted for during test. In the MAX503, linearity and gain error are measured from code 3 to code 1023 (see Note 2 under Electrical Characteristics). The output amplifier offset does not affect monotonicity, and these DACs are guaranteed monotonic starting with code zero. In dual-supply operation, linearity and gain error are measured from code 0 to 1023.

Power-Supply Bypassing and Ground Management

Best system performance is obtained with printed circuit boards that use separate analog and digital ground planes. Wire-wrap boards are not recommended. The two ground planes should be connected together at the low-impedance power-supply source.
AGND and REFGND should be connected together, and then to DGND at the chip. For single-supply applications, connect VSS to AGND at the chip. The best

Figure 12. Four-Quadrant Multiplying Circuit
ground connection may be achieved by connecting the AGND, REFGND, and DGND pins together and connecting that point to the system analog ground plane. If DGND is connected to the system digital ground, digital noise may get through to the DAC's analog portion.
Bypass VDD (and VSS in dual-supply mode) with a $0.1 \mu \mathrm{~F}$ ceramic capacitor connected between V_{DD} and AGND (and between VSs and AGND). Mount the capacitors with short leads close to the device.

AC Considerations

Digital Feedthrough
High-speed data at any of the digital input pins may couple through the DAC package and cause internal stray capacitance to appear as noise at the DAC output, even though LDAC and CS are held high (see Typical Operating Characteristics). This digital feedthrough is tested by holding $\overline{\text { LDAC }}$ and $\overline{\mathrm{CS}}$ high and toggling the data inputs from all 1 s to all 0 s .

Analog Feedthrough

Because of internal stray capacitance, higher-frequency analog input signals at REFIN may couple to the output, even when the input digital code is all 0 s , as shown in the Typical Operating Characteristics graph Analog Feedthrough vs. Frequency. It is tested by setting CLR to low (which sets the DAC latches to all 0 s) and sweeping REFIN.

5V, Low-Power, Parallel-Input, Voltage-Output, 10-Bit DAC

Figure 13. Single-Supply DAC Transfer Function implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

